Ученые испытали надежный сверхпроводящий кабель
Захари Хартвиг (Zachary S Hartwig) из Массачусетского технологического института вместе с коллегами создали и протестировали высокотемпературный сверхпроводящий кабель, отличающийся надежностью, простотой конструкции, термостойкостью и высокой механической стабильностью.
Разработка получила название VIPER (Vacuum pressure impregnated, Insulated, Partially transposed, Extruded and Roll-formed) — акроним технологических процессов его изготовления и структуры. Основа кабеля состоит из впаянных в медный сердечник методом вакуумной пропитки скрученных лент сверхпроводниковых материалов GdBa2Cu3O7−δ и YBa2Cu3O7−x — оксидов гадолиния-бария-меди и иттрия-бария-меди. В центре кабеля расположен канал для хладагента. Сверху кабель покрыт дополнительной медной оболочкой и опционально может быть обернут нержавеющей сталью. Именно за счет паяной цельной конструкции и оптимального соотношения толщины медного основания и сверхпроводящих лент достигается высокая стабильность кабеля.
Разработку испытали в Институте Пауля Шеррера, в Швейцарии на установке для тестирования магнитов и кабелей SULTAN, способной генерировать магнитное поле до 11 Тесла и ток до 100 килоампер. Несколько кабелей подвергали воздействию сил равных от 136 до 382 килоньютон на метр, при прохождении максимального тока до 35 килоампер и магнитного поля 10,9 Тесла на метр, в течение от 150 до 2000 циклов работы. При максимальной нагрузке 382 килоньютон на метр, что почти в четыре раза больше предыдущего рекорда в 102 килоньютон на метр, деградация проводящих свойств оказалось незначительной, и составила не более 4.1%. Конструкция кабеля также показала высокую криостабильность и выдержала три последовательных тепловых импульса от нагревателя мощностью 45 ватт, быстро возвращаясь к рабочему значению температуры и сохраняя сверхпроводящие свойства.
С помощью сверхпроводников можно получать сильные магнитные поля, которые можно применять, например, в токамаках и стеллараторах — реакторах для управляемого термоядерного синтеза, а также в коллайдерах, маглевах и в других интересных проектах. Обмотка реакционной камеры из сверхпроводящего кабеля в токамаке организует тороидальные магнитные поля, которые удерживают плазму на расстоянии от стенок камеры, которые не способны выдержать температуру плазмы, равную 108 и более кельвин.
Конструкторы утверждают, что их кабель планируется использовать в проекте нового токамака SPARC, строительство которого запланировано на 2021 год.
Источник: N+1
Дата публикации: 19.10.2020
Первоисточник: Superconductor Science and Technology